Skip to content
Related Articles

Related Articles

Find pair with maximum GCD in an array

View Discussion
Improve Article
Save Article
  • Difficulty Level : Hard
  • Last Updated : 23 Jun, 2022
View Discussion
Improve Article
Save Article

We are given an array of positive integers. Find the pair in array with maximum GCD.
Examples: 
 

Input : arr[] : { 1 2 3 4 5 }
Output : 2
Explanation : Pair {2, 4} has GCD 2 which is highest. Other pairs have a GCD of 1.

Input : arr[] : { 2 3 4 8 8 11 12 }
Output : 8
Explanation : Pair {8, 8} has GCD 8 which is highest.

 

Recommended Practice

Method 1 (Brute-force): The simplest method to solve this problem is to use two loops to generate all possible pairs of elements of the array and calculate and compare the GCD at the same time. We can use the Extended Euclidean algorithm for efficiently computing GCD of two numbers. 
Time Complexity: O(N^2 * log(max(a, b))) 
Here, log(max(a, b)) is the time complexity to calculate GCD of a and b.
Method 2 : (Efficient) In this method, we maintain a count array to store the count of divisors of every element. We will traverse the given array and for every element, we will calculate its divisors and increment at the index of count array. The process of computing divisors will take O(sqrt(arr[i])) time, where arr[i] is element in the given array at index i. After the whole traversal, we can simply traverse the count array from last index to index 1. If we found an index with a value greater than 1, then this means that it is a divisor of 2 elements and also the max GCD.
Below is the implementation of above approach :
 

C++




// C++ Code to find pair with
// maximum GCD in an array
#include <bits/stdc++.h>
 
using namespace std;
 
// function to find GCD of pair with
// max GCD in the array
int findMaxGCD(int arr[], int n)
{
    // Computing highest element
    int high = 0;
    for (int i = 0; i < n; i++)
        high = max(high, arr[i]);
 
    // Array to store the count of divisors
    // i.e. Potential GCDs
    int divisors[high + 1] = { 0 };
 
    // Iterating over every element
    for (int i = 0; i < n; i++)
    {
        // Calculating all the divisors
        for (int j = 1; j <= sqrt(arr[i]); j++)
        {
            // Divisor found
            if (arr[i] % j == 0)
            {
                // Incrementing count for divisor
                divisors[j]++;
 
                // Element/divisor is also a divisor
                // Checking if both divisors are
                // not same
                if (j != arr[i] / j)
                    divisors[arr[i] / j]++;
            }
        }
    }
 
    // Checking the highest potential GCD
    for (int i = high; i >= 1; i--)
     
        // If this divisor can divide at least 2
        // numbers, it is a GCD of at least 1 pair
        if (divisors[i] > 1)
            return i;   
}
 
// Driver code
int main()
{
    // Array in which pair with max GCD
    // is to be found
    int arr[] = { 1, 2, 4, 8, 8, 12 };
 
    // Size of array
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout << findMaxGCD(arr,n);
    return 0;
}

Java




// JAVA Code for Find pair with maximum GCD in an array
class GFG {
      
    // function to find GCD of pair with
    // max GCD in the array
    public static int findMaxGCD(int arr[], int n)
    {
        // Computing highest element
        int high = 0;
        for (int i = 0; i < n; i++)
            high = Math.max(high, arr[i]);
      
        // Array to store the count of divisors
        // i.e. Potential GCDs
        int divisors[] =new int[high + 1];
      
        // Iterating over every element
        for (int i = 0; i < n; i++)
        {
            // Calculating all the divisors
            for (int j = 1; j <= Math.sqrt(arr[i]); j++)
            {
                // Divisor found
                if (arr[i] % j == 0)
                {
                    // Incrementing count for divisor
                    divisors[j]++;
      
                    // Element/divisor is also a divisor
                    // Checking if both divisors are
                    // not same
                    if (j != arr[i] / j)
                        divisors[arr[i] / j]++;
                }
            }
        }
      
        // Checking the highest potential GCD
        for (int i = high; i >= 1; i--)
          
            // If this divisor can divide at least 2
            // numbers, it is a GCD of at least 1 pair
            if (divisors[i] > 1)
                return i;
        return 1;
    }
     
    /* Driver program to test above function */
    public static void main(String[] args)
    {
        // Array in which pair with max GCD
        // is to be found
        int arr[] = { 1, 2, 4, 8, 8, 12 };
      
        // Size of array
        int n = arr.length;
      
        System.out.println(findMaxGCD(arr,n));
    }
  }
   
// This code is contributed by Arnav Kr. Mandal.

Python




# Python program to Find pair with
# maximum GCD in an array
import math
 
# function to find GCD of pair with
# max GCD in the array
def findMaxGCD(arr, n) :
     
    # Computing highest element
    high = 0
    i = 0
    while i < n :
        high = max(high, arr[i])
        i = i + 1
  
    # Array to store the count of divisors
    # i.e. Potential GCDs
    divisors = [0] * (high + 1)
  
    # Iterating over every element
    i = 0
    while i < n :
         
        # Calculating all the divisors
        j = 1
        while j <= math.sqrt(arr[i]) :
         
            # Divisor found
            if (arr[i] % j == 0) :
         
                # Incrementing count for divisor
                divisors[j]= divisors[j]+1
                 
                # Element/divisor is also a divisor
                # Checking if both divisors are
                # not same
                if (j != arr[i] / j) :
                    divisors[arr[i] / j] = divisors[arr[i] / j]
                                          + 1
             
            j = j + 1
                     
        i = i + 1           
         
    # Checking the highest potential GCD
    i = high
    while i >= 1 :
         
        # If this divisor can divide at least 2
        # numbers, it is a GCD of at least 1 pair
        if (divisors[i] > 1) :
            return i
        i = i - 1
    return 1
 
# Driver code
 
# Array in which pair with max GCD
# is to be found
arr = [ 1, 2, 4, 8, 8, 12 ]
  
# Size of array
n = len(arr)
 
print findMaxGCD(arr,n)
 
# This code is contributed by Nikita Tiwari.

C#




// C# Code for Find pair with
// maximum GCD in an array
using System;
 
class GFG {
     
    // Function to find GCD of pair
    // with max GCD in the array
    public static int findMaxGCD(int []arr,
                                 int n)
    {
        // Computing highest element
        int high = 0;
        for (int i = 0; i < n; i++)
            high = Math.Max(high, arr[i]);
     
        // Array to store the count of
        // divisors i.e. Potential GCDs
        int []divisors =new int[high + 1];
     
        // Iterating over every element
        for (int i = 0; i < n; i++)
        {
            // Calculating all the divisors
            for (int j = 1; j <=
                 Math.Sqrt(arr[i]); j++)
            {
                // Divisor found
                if (arr[i] % j == 0)
                {
                    // Incrementing count
                    // for divisor
                    divisors[j]++;
     
                    // Element / divisor is also
                    // a divisor Checking if both
                    // divisors are not same
                    if (j != arr[i] / j)
                        divisors[arr[i] / j]++;
                }
            }
        }
     
        // Checking the highest potential GCD
        for (int i = high; i >= 1; i--)
         
            // If this divisor can divide at
            // least 2 numbers, it is a
            // GCD of at least 1 pair
            if (divisors[i] > 1)
                return i;
        return 1;
    }
     
    // Driver Code
    public static void Main(String []args)
    {
        // Array in which pair with
        // max GCD is to be found
        int []arr = {1, 2, 4, 8, 8, 12};
     
        // Size of array
        int n = arr.Length;
     
        Console.WriteLine(findMaxGCD(arr,n));
    }
}
 
// This code is contributed by vt_m.

PHP




<?php
// PHP Code for Find pair with
// maximum GCD in an array
 
// Function to find GCD
// of pair with max GCD
// in the array
function findMaxGCD($arr, $n)
{
    // Computing highest element
    $high = 0;
    for ($i = 0; $i < $n; $i++)
        $high = max($high, $arr[$i]);
 
    // Array to store the
    // count of divisors
    // i.e. Potential GCDs
    $divisors = array_fill(0, $high + 1, 0);
 
    // Iterating over every element
    for ($i = 0; $i < $n; $i++)
    {
        // Calculating all
        // the divisors
        for ($j = 1;
             $j <= (int)(sqrt($arr[$i])); $j++)
        {
            // Divisor found
            if ($arr[$i] % $j == 0)
            {
                // Incrementing count
                // for divisor
                $divisors[$j]++;
 
                // Element/divisor is also
                // a divisor Checking if
                // both divisors are not same
                if ($j != (int)($arr[$i] / $j))
                    $divisors[(int)($arr[$i] / $j)]++;
            }
        }
    }
 
    // Checking the highest
    // potential GCD
    for ($i = $high; $i >= 1; $i--)
     
        // If this divisor can divide
        // at least 2 numbers, it is
        // a GCD of at least 1 pair
        if ($divisors[$i] > 1)
            return $i;
}
 
// Driver code
 
// Array in which pair
// with max GCD is to
// be found
$arr = array( 1, 2, 4, 8, 8, 12 );
 
// Size of array
$n = sizeof($arr);
 
echo findMaxGCD($arr,$n);
 
// This code is contributed by mits
?>

Javascript




<script>
 
// JavaScript Code for Find pair with
// maximum GCD in an array
 
      
// function to find GCD of pair with
// max GCD in the array
function findMaxGCD(arr , n)
{
    // Computing highest element
    var high = 0;
    for (var i = 0; i < n; i++)
        high = Math.max(high, arr[i]);
  
    // Array to store the count of divisors
    // i.e. Potential GCDs
    var divisors =
    Array.from({length: high + 1}, (_, i) => 0);
  
    // Iterating over every element
    for (var i = 0; i < n; i++)
    {
        // Calculating all the divisors
        for (var j = 1; j <= Math.sqrt(arr[i]); j++)
        {
            // Divisor found
            if (arr[i] % j == 0)
            {
                // Incrementing count for divisor
                divisors[j]++;
  
                // Element/divisor is also a divisor
                // Checking if both divisors are
                // not same
                if (j != arr[i] / j)
                    divisors[arr[i] / j]++;
            }
        }
    }
  
    // Checking the highest potential GCD
    for (var i = high; i >= 1; i--)
      
        // If this divisor can divide at least 2
        // numbers, it is a GCD of at least 1 pair
        if (divisors[i] > 1)
            return i;
    return 1;
}
 
/* Driver program to test above function */
 // Array in which pair with max GCD
// is to be found
    var arr = [ 1, 2, 4, 8, 8, 12 ];
  
    // Size of array
    var n = arr.length;
  
    document.write(findMaxGCD(arr,n));
 
// This code contributed by shikhasingrajput
 
</script>

Output:  

8

Time Complexity: O(N * sqrt(arr[i]) + H) , where arr[i] denotes the element of the array and H denotes the largest number of the array.
Auxiliary Space: O(high), high is the maximum element in the array

Method 3 (Most Efficient): This approach is based on the idea of Sieve Of Eratosthenes
First let’s solve a simpler problem, given a value X we have to tell whether a pair has a GCD equal to X. This can be done by checking that how many elements in the array are multiples of X. If the number of such multiples is greater than 1, then X will be a GCD of some pair. 
Now for pair with maximum GCD, we maintain a count array of the original array. Our method is based on the above problem with Sieve-like approach for loop. Below is the step by step algorithm of this approach: 
 

  1. Iterate ‘i’ from MAX (maximum array element) to 1.
  2. Iterate ‘j’ from ‘i’ to MAX. We will check if the count array is 1 at index ‘j’.
  3. Increment the index ‘j’ everytime with ‘i’. This way, we can check for 
    i, 2i, 3i, and so on.
  4. If we get 1 two times at count array that means 2 multiples of i exists. This makes it the highest GCD.

Below is the implementation of above approach : 
 

C++




// C++ Code to
// Find pair with
// maximum GCD in
// an array
#include <bits/stdc++.h>
using namespace std;
 
// function to find
// GCD of pair with
// max GCD in the
// array
int findMaxGCD(int arr[], int n)
{
    // Calculating MAX in array
    int high = 0;
    for (int i = 0; i < n; i++)
        high = max(high, arr[i]);
 
    // Maintaining count array
    int count[high + 1] = {0};
    for (int i = 0; i < n; i++)
        count[arr[i]]++;
 
    // Variable to store the
    // multiples of a number
    int counter = 0;
 
    // Iterating from MAX to 1
    // GCD is always between
    // MAX and 1. The first
    // GCD found will be the
    // highest as we are
    // decrementing the potential
    // GCD
    for (int i = high; i >= 1; i--)
    {
        int j = i;
       counter = 0;
   
        // Iterating from current
        // potential GCD
        // till it is less than
        // MAX
        while (j <= high)
        {
            // A multiple found
 
            if(count[j] >=2)
               return j;
 
           else if (count[j] == 1)        
                counter++;        
 
            // Incrementing potential
            // GCD by itself
            // To check i, 2i, 3i....
            j += i;
 
            // 2 multiples found,
            // max GCD found
            if (counter == 2)        
                return i;
        }
    }
}
 
// Driver code
int main()
{
    // Array in which pair
    // with max GCD is to
    // be found
    int arr[] = { 1, 2, 4, 8, 8, 12 };
 
    // Size of array
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout << findMaxGCD(arr, n);
 
    return 0;
}

Java




// Java Code to
// Find pair with
// maximum GCD in
// an array
 
class GFG {
     
    // function to find
    // GCD of pair with
    // max GCD in the
    // array
    public static int findMaxGCD(int arr[], int n)
    {
        // Calculating MAX in
        // array
        int high = 0;
        for (int i = 0; i < n; i++)
            high = Math.max(high, arr[i]);
     
        // Maintaining count array
        int count[]=new int[high + 1];
        for (int i = 0; i < n; i++)
            count[arr[i]]++;
     
        // Variable to store
        // the multiples of
        // a number
        int counter = 0;
     
        // Iterating from MAX
        // to 1 GCD is always
        // between MAX and 1
        // The first GCD found
        // will be the highest
        // as we are decrementing
        // the potential GCD
        for (int i = high; i >= 1; i--)
        {
            int j = i;
     
            // Iterating from current
            // potential GCD till it
            // is less than MAX
            while (j <= high)
            {
                // A multiple found
                if (count[j]>0)    
                    counter+=count[j];        
     
                // Incrementing potential
                // GCD by itself
                // To check i, 2i, 3i....
                j += i;
     
                // 2 multiples found,
                // max GCD found
                if (counter == 2)        
                    return i;
            }
            counter=0;
        }
    return 1;
    }
     
    /* Driver program to test above function */
    public static void main(String[] args)
    {
        // Array in which pair
        // with max GCD is to
        // be found
        int arr[] = {1, 2, 4, 8, 8, 12};
     
        // Size of array
        int n = arr.length;
     
        System.out.println(findMaxGCD(arr,n));
    }
}
 
// This code is contributed by Arnav Kr. Mandal.

Python3




# Python3 Code to
# Find pair with
# maximum GCD in
# an array
 
# function to find
# GCD of pair with
# max GCD in the
# array
def findMaxGCD(arr, n) :
     
    # Calculating MAX in
    # array
    high = 0
    for i in range(0, n) :
        high = max(high, arr[i])
 
    # Maintaining count array
    count = [0] * (high + 1)
    for i in range(0, n) :
        count[arr[i]]+=1
 
    # Variable to store the
    # multiples of a number
    counter = 0
 
    # Iterating from MAX
    # to 1 GCD is always
    # between MAX and 1
    # The first GCD found
    # will be the highest
    # as we are decrementing
    # the potential GCD
    for i in range(high, 0, -1) :
        j = i
 
        # Iterating from current
        # potential GCD till it
        # is less than MAX
        while (j <= high) :
 
            # A multiple found
            if (count[j] >0) :
                counter+=count[j]   
 
            # Incrementing potential
            # GCD by itself
            # To check i, 2i, 3i....
            j += i
 
            # 2 multiples found,
            # max GCD found
            if (counter == 2) :
                return i
        counter=0
         
# Driver code
 
# Array in which pair
# with max GCD is to
# be found
arr = [1, 2, 4, 8, 8, 12]
# Size of array
n = len(arr)
print(findMaxGCD(arr, n))
 
#This code is contributed by Nikita Tiwari.

C#




// C# Code to find pair with
// maximum GCD in an array
using System;
 
class GFG {
     
    // function to find GCD
    // of pair with max
    // max GCD in the array
    public static int findMaxGCD(int []arr,
                                int n)
    {
        // Calculating Max
        // in array
        int high = 0;
        for (int i = 0; i < n; i++)
            high = Math.Max(high, arr[i]);
     
        // Maintaining count array
        int []count=new int[high + 1];
        for (int i = 0; i < n; i++)
            count[arr[i]]++;
     
        // Variable to store
        // the multiples of
        // a number
        int counter = 0;
     
        // Iterating from MAX
        // to 1 GCD is always
        // between MAX and 1
        // The first GCD found
        // will be the highest
        // as we are decrementing
        // the potential GCD
        for (int i = high; i >= 1; i--)
        {
            int j = i;
     
            // Iterating from current
            // potential GCD till it
            // is less than MAX
            while (j <= high)
            {
                // A multiple found
                if (count[j]>0)    
                    counter+=count[j];    
     
                // Incrementing potential
                // GCD by itself
                // To check i, 2i, 3i....
                j += i;
     
                // 2 multiples found,
                // max GCD found
                if (counter == 2)    
                    return i;
            }
            counter=0;
        }
    return 1;
    }
     
    // Driver Code
    public static void Main(String []args)
    {
        // Array in which pair
        // with max GCD is to
        // be found
        int []arr = {1, 2, 4, 8, 8, 12};
     
        // Size of array
        int n = arr.Length;
     
        Console.WriteLine(findMaxGCD(arr,n));
    }
}
 
// This code is contributed by vt_m.

PHP




<?php
// PHP Code to Find pair with maximum
// GCD in an array
 
// function to find GCD of pair with
// max GCD in the array
function findMaxGCD($arr, $n)
{
    // Calculating MAX in array
    $high = 0;
    for ($i = 0; $i < $n; $i++)
        $high = max($high, $arr[$i]);
 
    // Maintaining count array
    $count = array_fill(0, $high + 1, 0);
    for ($i = 0; $i < $n; $i++)
        $count[$arr[$i]]++;
 
    // Variable to store the multiples
    // of a number
    $counter = 0;
 
    // Iterating from MAX to 1 GCD is always
    // between MAX and 1. The first GCD found
    // will be the highest as we are decrementing
    // the potential GCD
    for ($i = $high; $i >= 1; $i--)
    {
        $j = $i;
        $counter = 0;
 
        // Iterating from current potential GCD
        // till it is less than MAX
        while ($j <= $high)
        {
            // A multiple found
 
            if($count[$j] >= 2)
            return $j;
 
        else if ($count[$j] == 1)    
                $counter++;    
 
            // Incrementing potential GCD by itself
            // To check i, 2i, 3i....
            $j += $i;
 
            // 2 multiples found, max GCD found
            if ($counter == 2)    
                return $i;
        }
    }
}
 
// Driver code
 
// Array in which pair with max GCD
// is to be found
$arr = array( 1, 2, 4, 8, 8, 12 );
 
// Size of array
$n = count($arr);
 
print(findMaxGCD($arr, $n));
 
// This code is contributed by mits
?>

Javascript




<script>
// javascript Code to
// Find pair with
// maximum GCD in
// an array
 
    // function to find
    // GCD of pair with
    // max GCD in the
    // array
    function findMaxGCD(arr , n)
    {
     
        // Calculating MAX in
        // array
        var high = 0;
        for (let i = 0; i < n; i++)
            high = Math.max(high, arr[i]);
 
        // Maintaining count array
         var count = Array(high + 1).fill(0);
    for (let i = 0; i < n; i++)
        count[arr[i]]++;
 
        // Variable to store
        // the multiples of
        // a number
        var counter = 0;
 
        // Iterating from MAX
        // to 1 GCD is always
        // between MAX and 1
        // The first GCD found
        // will be the highest
        // as we are decrementing
        // the potential GCD
        for (let i = high; i >= 1; i--)
        {
            var j = i;
 
            // Iterating from current
            // potential GCD till it
            // is less than MAX
            while (j <= high)
            {
             
                // A multiple found
                if (count[j] > 0)
                    counter += count[j];
 
                // Incrementing potential
                // GCD by itself
                // To check i, 2i, 3i....
                j += i;
 
                // 2 multiples found,
                // max GCD found
                if (counter == 2)
                    return i;
            }
            counter = 0;
        }
        return 1;
    }
 
    /* Driver program to test above function */
     
        // Array in which pair
        // with max GCD is to
        // be found
        var arr = [ 1, 2, 4, 8, 8, 12 ];
 
        // Size of array
        var n = arr.length;
        document.write(findMaxGCD(arr, n));
 
// This code is contributed by aashish1995
</script>

Output:  

8

Time Complexity: The time complexity of this approach is till an open problem known as the Dirichlet divisor problem. 

Time Complexity: O(high2) , high is the maximum element in the array
Auxiliary Space: O(high), high is the maximum element in the array

This article is contributed by Aarti_Rathi and Rohit Thapliyal. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!