Skip to content
Related Articles

Related Articles

Count number of pairs (A <= N, B <= N) such that gcd (A , B) is B

View Discussion
Improve Article
Save Article
  • Difficulty Level : Hard
  • Last Updated : 09 Mar, 2021
View Discussion
Improve Article
Save Article

Given a number n. We need find the number of ordered pairs of a and b such gcd(a, b) is b itself
Examples : 
 

Input : n = 2
Output : 3
(1, 1) (2, 2) and (2, 1) 

Input : n = 3
Output : 5
(1, 1) (2, 2) (3, 3) (2, 1) and (3, 1)

 

Naive approach : gcd(a, b) = b means b is a factor of a. So total number of pairs will be equal to sum of divisors for each a = 1 to n. Please refer find all divisors of a natural number for implementation.
Efficient approach : gcd(a, b) = b means that a is a multiple of b. So total number of pairs will be sum of number of multiples of each b (where b varies from 1 to n) which are less than or equal to n. 
For a number i, number of multiples of i is less than or equal to floor(n/i). So what we need to do is just sum the floor(n/i) for each i = 1 to n and print it. But more optimizations can be done. floor(n/i) can have atmost 2*sqrt(n) values for i >= sqrt(n). floor(n/i) can vary from 1 to sqrt(n) and similarly for i = 1 to sqrt(n) floor(n/i) can have values from 1 to sqrt(n). So total of 2*sqrt(n) distinct values 
 

let floor(n/i) = k
k <= n/i < k + 1
n/k+1 < i <= n/k
floor(n/k+1) < i <= floor(n/k)
Thus for given k the largest value of i for 
which the floor(n/i) = k is floor(n/k)
and all the set of i for which the 
floor(n/i) = k are consecutive

 

CPP




// C++ implementation of counting pairs
// such that gcd (a, b) = b
#include <bits/stdc++.h>
using namespace std;
 
// returns number of valid pairs
int CountPairs(int n)
{
    // initialize k
    int k = n;
 
    // loop till imin <= n
    int imin = 1;
 
    // Initialize result
    int ans = 0;
 
    while (imin <= n) {
 
        // max i with given k floor(n/k)
        int imax = n / k;
 
        // adding k*(number of i with
        // floor(n/i) = k to ans
        ans += k * (imax - imin + 1);
 
        // set imin = imax + 1 and k = n/imin
        imin = imax + 1;
        k = n / imin;
    }
 
    return ans;
}
 
// Driver function
int main()
{
    cout << CountPairs(1) << endl;
    cout << CountPairs(2) << endl;
    cout << CountPairs(3) << endl;
    return 0;
}

Java




// Java implementation of counting pairs
// such that gcd (a, b) = b
class GFG {
     
    // returns number of valid pairs
    static int CountPairs(int n) {
         
        // initialize k
        int k = n;
     
        // loop till imin <= n
        int imin = 1;
     
        // Initialize result
        int ans = 0;
     
        while (imin <= n) {
     
            // max i with given k floor(n/k)
            int imax = n / k;
         
            // adding k*(number of i with
            // floor(n/i) = k to ans
            ans += k * (imax - imin + 1);
         
            // set imin = imax + 1
            // and k = n/imin
            imin = imax + 1;
            k = n / imin;
        }
     
        return ans;
    }
     
    // Driver code
    public static void main(String[] args) {
        System.out.println(CountPairs(1));
        System.out.println(CountPairs(2));
        System.out.println(CountPairs(3));
    }
}
 
// This code is contributed by Anant Agarwal.

Python3




# Python implementation of counting
# pairs such that gcd (a, b) = b
 
# returns number of valid pairs
def CountPairs(n):
     
    # initialize k
    k = n
 
    # loop till imin <= n
    imin = 1
 
    # Initialize result
    ans = 0
 
    while(imin <= n):
 
        # max i with given k floor(n / k)
        imax = n / k
 
        # adding k*(number of i with
        # floor(n / i) = k to ans
        ans += k * (imax - imin + 1)
 
        # set imin = imax + 1 and
        # k = n / imin
        imin = imax + 1
        k = n / imin
 
    return ans
     
# Driver code
print(CountPairs(1))
print(CountPairs(2))
print(CountPairs(3))
 
# This code is contributed by Anant Agarwal.

C#




// C# implementation of counting
// pairs such that gcd (a, b) = b
using System;
 
class GFG {
     
    // returns number of valid pairs
    static int CountPairs(int n)
    {
         
        // initialize k
        int k = n;
     
        // loop till imin <= n
        int imin = 1;
     
        // Initialize result
        int ans = 0;
     
        while (imin <= n) {
     
            // max i with given
            // k floor(n / k)
            int imax = n / k;
         
            // adding k * (number of i 
            // with floor(n / i) = k
            // to ans
            ans += k * (imax - imin + 1);
         
            // set imin = imax + 1
            // and k = n / imin
            imin = imax + 1;
            k = n / imin;
        }
     
        return ans;
    }
     
    // Driver code
    public static void Main(String []args)
    {
        Console.WriteLine(CountPairs(1));
        Console.WriteLine(CountPairs(2));
        Console.WriteLine(CountPairs(3));
    }
}
 
// This code is contributed by vt_m.

PHP




<?php
// PHP implementation of counting
// pairs such that gcd (a, b) = b
 
// returns number of valid pairs
function CountPairs($n)
{
 
    // initialize k
    $k = $n;
 
    // loop till imin <= n
    $imin = 1;
 
    // Initialize result
    $ans = 0;
 
    while ($imin <= $n)
    {
 
        // max i with given k floor(n/k)
        $imax = $n / $k;
 
        // adding k*(number of i with
        // floor(n/i) = k to ans
        $ans += $k * ($imax - $imin + 1);
 
        // set imin = imax + 1
        // and k = n/imin
        $imin = $imax + 1;
        $k = (int)($n / $imin);
    }
 
    return $ans;
}
 
// Driver Code
echo(CountPairs(1) . "\n");
echo(CountPairs(2) . "\n");
echo(CountPairs(3) . "\n");
 
// This code is contributed by Ajit.
?>

Javascript




<script>
 
// Javascript implementation of counting pairs
// such that gcd (a, b) = b
 
// returns number of valid pairs
function CountPairs(n)
{
    // initialize k
    let k = n;
 
    // loop till imin <= n
    let imin = 1;
 
    // Initialize result
    let ans = 0;
 
    while (imin <= n) {
 
        // max i with given k floor(n/k)
        let imax = Math.floor(n / k);
 
        // adding k*(number of i with
        // floor(n/i) = k to ans
        ans += k * (imax - imin + 1);
 
        // set imin = imax + 1 and k = n/imin
        imin = imax + 1;
        k = Math.floor(n / imin);
    }
 
    return ans;
}
 
// Driver function
 
    document.write(CountPairs(1) + "<br>");
    document.write(CountPairs(2) + "<br>");
    document.write(CountPairs(3) + "<br>");
 
// This is code is contributed by Mayank Tyagi
 
</script>

Output : 

1
3
5

This article is contributed by Ayush Jha. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!