# Check if a number is power of k using base changing method

This program checks whether a number n can be expressed as power of k and if yes, then to what power should k be raised to make it n. Following example will clarify : **Examples:**

Input : n = 16, k = 2 Output : yes : 4 Explanation : Answer is yes because 16 can be expressed as power of 2. Input : n = 27, k = 3 Output : yes : 3 Explanation : Answer is yes as 27 can be expressed as power of 3. Input : n = 20, k = 5 Output : No Explanation : Answer is No as 20 cannot be expressed as power of 5.

We have discussed two methods in below post

:Check if a number is a power of another number

In this post, a new Base Changing method is discussed.

In **Base Changing Method**, we simply change the base of number n to k and check if the first digit of Changed number is 1 and remaining all are zero.**Example for this** : Let’s take n = 16 and k = 2.

Change 16 to base 2. i.e. (10000)_{2}. Since first digit is 1 and remaining are zero. Hence 16 can be expressed as power of 2. Count the length of (10000)_{2} and subtract 1 from it, that’ll be the number to which 2 must be raised to make 16. In this case 5 – 1 = 4.**Another example** : Let’s take n = 20 and k = 3.

20 in base 3 is (202)_{3}. Since there are two non-zero digit, hence 20 cannot be expressed as power of 3.

## C++

`// CPP program to check if a number can be` `// raised to k` `#include <iostream>` `#include <algorithm>` `using` `namespace` `std;` `bool` `isPowerOfK(unsigned ` `int` `n, unsigned ` `int` `k)` `{` ` ` `// loop to change base n to base = k` ` ` `bool` `oneSeen = ` `false` `;` ` ` `while` `(n > 0) {` ` ` `// Find current digit in base k` ` ` `int` `digit = n % k;` ` ` `// If digit is neither 0 nor 1` ` ` `if` `(digit > 1)` ` ` `return` `false` `;` ` ` `// Make sure that only one 1` ` ` `// is present.` ` ` `if` `(digit == 1)` ` ` `{` ` ` `if` `(oneSeen)` ` ` `return` `false` `;` ` ` `oneSeen = ` `true` `;` ` ` `} ` ` ` `n /= k;` ` ` `}` ` ` ` ` `return` `true` `;` `}` `// Driver code` `int` `main()` `{` ` ` `int` `n = 64, k = 4;` ` ` `if` `(isPowerOfK(n ,k))` ` ` `cout << ` `"Yes"` `;` ` ` `else` ` ` `cout << ` `"No"` `;` `}` |

## Java

`// Java program to check if a number can be` `// raised to k` `class` `GFG` `{` ` ` `static` `boolean` `isPowerOfK(` `int` `n,` `int` `k)` ` ` `{` ` ` `// loop to change base n to base = k` ` ` `boolean` `oneSeen = ` `false` `;` ` ` `while` `(n > ` `0` `)` ` ` `{` ` ` ` ` `// Find current digit in base k` ` ` `int` `digit = n % k;` ` ` ` ` `// If digit is neither 0 nor 1` ` ` `if` `(digit > ` `1` `)` ` ` `return` `false` `;` ` ` ` ` `// Make sure that only one 1` ` ` `// is present.` ` ` `if` `(digit == ` `1` `)` ` ` `{` ` ` `if` `(oneSeen)` ` ` `return` `false` `;` ` ` `oneSeen = ` `true` `;` ` ` `} ` ` ` ` ` `n /= k;` ` ` `}` ` ` ` ` `return` `true` `;` ` ` `}` ` ` ` ` `// Driver code` ` ` `public` `static` `void` `main (String[] args)` ` ` `{` ` ` `int` `n = ` `64` `, k = ` `4` `;` ` ` ` ` `if` `(isPowerOfK(n ,k))` ` ` `System.out.print(` `"Yes"` `);` ` ` `else` ` ` `System.out.print(` `"No"` `);` ` ` `}` `}` `// This code is contributed by Anant Agarwal.` |

## Python3

`# Python program to` `# check if a number can be` `# raised to k` `def` `isPowerOfK(n, k):` ` ` `# loop to change base` ` ` `# n to base = k` ` ` `oneSeen ` `=` `False` ` ` `while` `(n > ` `0` `):` ` ` ` ` `# Find current digit in base k` ` ` `digit ` `=` `n ` `%` `k` ` ` ` ` `# If digit is neither 0 nor 1` ` ` `if` `(digit > ` `1` `):` ` ` `return` `False` ` ` ` ` `# Make sure that only one 1` ` ` `# is present.` ` ` `if` `(digit ` `=` `=` `1` `):` ` ` ` ` `if` `(oneSeen):` ` ` `return` `False` ` ` `oneSeen ` `=` `True` ` ` ` ` `n ` `/` `/` `=` `k` ` ` ` ` `return` `True` ` ` `# Driver code` `n ` `=` `64` `k ` `=` `4` ` ` `if` `(isPowerOfK(n , k)):` ` ` `print` `(` `"Yes"` `)` `else` `:` ` ` `print` `(` `"No"` `)` `# This code is contributed` `# by Anant Agarwal.` |

## C#

`// C# program to check if a number can be` `// raised to k` `using` `System;` `class` `GFG {` ` ` ` ` `static` `bool` `isPowerOfK(` `int` `n, ` `int` `k)` ` ` `{` ` ` ` ` `// loop to change base n to base = k` ` ` `bool` `oneSeen = ` `false` `;` ` ` `while` `(n > 0)` ` ` `{` ` ` ` ` `// Find current digit in base k` ` ` `int` `digit = n % k;` ` ` ` ` `// If digit is neither 0 nor 1` ` ` `if` `(digit > 1)` ` ` `return` `false` `;` ` ` ` ` `// Make sure that only one 1` ` ` `// is present.` ` ` `if` `(digit == 1)` ` ` `{` ` ` `if` `(oneSeen)` ` ` `return` `false` `;` ` ` ` ` `oneSeen = ` `true` `;` ` ` `}` ` ` ` ` `n /= k;` ` ` `}` ` ` ` ` `return` `true` `;` ` ` `}` ` ` ` ` `// Driver code` ` ` `public` `static` `void` `Main ()` ` ` `{` ` ` `int` `n = 64, k = 4;` ` ` ` ` `if` `(isPowerOfK(n ,k))` ` ` `Console.WriteLine(` `"Yes"` `);` ` ` `else` ` ` `Console.WriteLine(` `"No"` `);` ` ` `}` `}` `// This code is contributed by vt_m.` |

## PHP

`<?php` `// PHP program to check` `// if a number can be` `// raised to k` `function` `isPowerOfK(` `$n` `, ` `$k` `)` `{` ` ` `// loop to change base` ` ` `// n to base = k` ` ` `$oneSeen` `= false;` ` ` `while` `(` `$n` `> 0)` ` ` `{` ` ` `// Find current` ` ` `// digit in base k` ` ` `$digit` `= ` `$n` `% ` `$k` `;` ` ` `// If digit is` ` ` `// neither 0 nor 1` ` ` `if` `(` `$digit` `> 1)` ` ` `return` `false;` ` ` `// Make sure that` ` ` `// only one 1` ` ` `// is present.` ` ` `if` `(` `$digit` `== 1)` ` ` `{` ` ` `if` `(` `$oneSeen` `)` ` ` `return` `false;` ` ` `$oneSeen` `= true;` ` ` `}` ` ` `$n` `= (int)` `$n` `/ ` `$k` `;` ` ` `}` ` ` ` ` `return` `true;` `}` `// Driver code` `$n` `= 64;` `$k` `= 4;` `if` `(isPowerOfK(` `$n` `, ` `$k` `))` ` ` `echo` `"Yes"` `;` `else` ` ` `echo` `"No"` `;` `// This code is contributed` `// by ajit` `?>` |

## Javascript

`<script>` `// JavaScript program to check if a number can be` `// raised to k` ` ` `function` `isPowerOfK(n,k)` ` ` `{` ` ` `// loop to change base n to base = k` ` ` `let oneSeen = ` `false` `;` ` ` `while` `(n > 0)` ` ` `{` ` ` ` ` `// Find current digit in base k` ` ` `let digit = n % k;` ` ` ` ` `// If digit is neither 0 nor 1` ` ` `if` `(digit > 1)` ` ` `return` `false` `;` ` ` ` ` `// Make sure that only one 1` ` ` `// is present.` ` ` `if` `(digit == 1)` ` ` `{` ` ` `if` `(oneSeen)` ` ` `return` `false` `;` ` ` `oneSeen = ` `true` `;` ` ` `} ` ` ` ` ` `n = Math.floor(n / k);` ` ` `}` ` ` ` ` `return` `true` `;` ` ` `}` `// Driver Code` ` ` `let n = 64, k = 4;` ` ` ` ` `if` `(isPowerOfK(n ,k))` ` ` `document.write(` `"Yes"` `);` ` ` `else` ` ` `document.write(` `"No"` `);` ` ` `</script>` |

**Output:**

Yes

**Time Complexity: **O(logn)

**Space Complexity:** O(1)

This article is contributed by **Shubham Rana**. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.