# Maximize profit in buying and selling stocks with Rest condition

The price of a stock on each day is given in an array **arr[]** for **N** days, the task is to find the maximum profit that can be made by buying and selling the stocks in those days with conditions that the stock must be sold before buying again and stock cannot be bought on the next day of selling a stock. (i.e, rest for at least one day).

**Examples:**

Input:arr[] = {2, 4, 5, 0, 2}Output:4Explanation:Buy at cost 2 and sell at cost 4, profit = 2. Buy at cost 0 and sell at cost 2, profit = 2. Total profit = 4.

Input:arr[] = {2, 0, 5, 1, 8}Output:8

**Approach :**

Consider three states: **REST**, **HOLD**, and **SOLD**.

RESTmeans not doing anything.HOLDmeans holding stock (bought a stock and have not sold).SOLDmeans state after selling the stock.

To reach the** REST** state, do nothing.

To reach the** HOLD** state, buy the stock.

To reach the **SOLD **state, sell the stock for which first there is a need to buy.

By the above actions, a transition diagram is made.

By using this transition diagram the profit can be found out.

On **i ^{th}** day:

**rest[i]**denotes maximum profit made by resting on day i. Since i^{th}day is rest day, the stock might have been sold on (i-1)^{th}day or might not have been sold. The value of**rest[i] = max( rest[i-1], sold[i-1])**.**hold[i]**denotes maximum profit made by buying on i^{th}day or by buying on some day before i^{th}and resting on i^{th}day. So, the value of**hold[i] = max( hold[i-1], rest[i-1]+price[i])**.**sold[i]**denotes maximum profit by selling i^{th}day. Stock must have been bought on some day before selling it on the i^{th}day.**Hence sold[i] = hold[i-1] + price[i]**.

Hence, the final answer will be the

maximum of

sold[n-1]andrest[n-1].

Below is the implementation of the above approach:

## C++

`// C++ program for the above problem` `#include <bits/stdc++.h>` `using` `namespace` `std;` `int` `maxProfit(` `int` `prices[], ` `int` `n)` `{` ` ` `// If there is only one day` ` ` `// for buying and selling` ` ` `// no profit can be made` ` ` `if` `(n <= 1)` ` ` `return` `0;` ` ` `// Array to store Maxprofit by` ` ` `// resting on given day` ` ` `int` `rest[n] = { 0 };` ` ` `// Array to store Maxprofit by` ` ` `// buying or resting on the` ` ` `// given day` ` ` `int` `hold[n] = { 0 };` ` ` `// Array to store Maxprofit by` ` ` `// selling on given day` ` ` `int` `sold[n] = { 0 };` ` ` `// Initially there will 0 profit` ` ` `rest[0] = 0;` ` ` `// Buying on 1st day results` ` ` `// in negative profit` ` ` `hold[0] = -prices[0];` ` ` `// zero profit since selling` ` ` `// before buying isn't possible` ` ` `sold[0] = 0;` ` ` `for` `(` `int` `i = 1; i < n; i++) {` ` ` `// max of profit on (i-1)th` ` ` `// day by resting and profit` ` ` `// on (i-1)th day by selling.` ` ` `rest[i] = max(rest[i - 1],` ` ` `sold[i - 1]);` ` ` `// max of profit by resting` ` ` `// on ith day and` ` ` `// buying on ith day.` ` ` `hold[i] = max(hold[i - 1],` ` ` `rest[i - 1]` ` ` `- prices[i]);` ` ` `// max of profit by selling` ` ` `// on ith day` ` ` `sold[i] = hold[i - 1] + prices[i];` ` ` `}` ` ` `// maxprofit` ` ` `return` `max(rest[n - 1],` ` ` `sold[n - 1]);` `}` `// Driver Code` `int` `main()` `{` ` ` `int` `price[] = { 2, 4,` ` ` `5, 0, 2 };` ` ` `int` `n = ` `sizeof` `(price)` ` ` `/ ` `sizeof` `(price[0]);` ` ` `cout << maxProfit(price, n)` ` ` `<< endl;` ` ` `return` `0;` `}` |

## Java

`// Java program for the above problem` `class` `GFG{` `static` `int` `maxProfit(` `int` `prices[], ` `int` `n)` `{` ` ` ` ` `// If there is only one day` ` ` `// for buying and selling` ` ` `// no profit can be made` ` ` `if` `(n <= ` `1` `)` ` ` `return` `0` `;` ` ` `// Array to store Maxprofit by` ` ` `// resting on given day` ` ` `int` `rest[] = ` `new` `int` `[n];` ` ` `// Array to store Maxprofit by` ` ` `// buying or resting on the` ` ` `// given day` ` ` `int` `hold[] = ` `new` `int` `[` `9` `];` ` ` `// Array to store Maxprofit by` ` ` `// selling on given day` ` ` `int` `sold[] = ` `new` `int` `[` `9` `];` ` ` `// Initially there will 0 profit` ` ` `rest[` `0` `] = ` `0` `;` ` ` `// Buying on 1st day results` ` ` `// in negative profit` ` ` `hold[` `0` `] = -prices[` `0` `];` ` ` `// Zero profit since selling` ` ` `// before buying isn't possible` ` ` `sold[` `0` `] = ` `0` `;` ` ` `for` `(` `int` `i = ` `1` `; i < n; i++)` ` ` `{` ` ` ` ` `// max of profit on (i-1)th` ` ` `// day by resting and profit` ` ` `// on (i-1)th day by selling.` ` ` `rest[i] = Math.max(rest[i - ` `1` `],` ` ` `sold[i - ` `1` `]);` ` ` ` ` `// max of profit by resting` ` ` `// on ith day and` ` ` `// buying on ith day.` ` ` `hold[i] = Math.max(hold[i - ` `1` `],` ` ` `rest[i - ` `1` `] -` ` ` `prices[i]);` ` ` ` ` `// max of profit by selling` ` ` `// on ith day` ` ` `sold[i] = hold[i - ` `1` `] + prices[i];` ` ` `}` ` ` ` ` `// maxprofit` ` ` `return` `Math.max(rest[n - ` `1` `],` ` ` `sold[n - ` `1` `]);` `}` `// Driver Code` `public` `static` `void` `main(String[] args)` `{` ` ` `int` `price[] = { ` `2` `, ` `4` `, ` `5` `, ` `0` `, ` `2` `};` ` ` `int` `n = price.length;` ` ` ` ` `System.out.print(maxProfit(price, n) + ` `"\n"` `);` `}` `}` `// This code is contributed by amal kumar choubey` |

## Python3

`# Python3 program for the above problem` `def` `maxProfit(prices, n):` ` ` `# If there is only one day` ` ` `# for buying and selling` ` ` `# no profit can be made` ` ` `if` `(n <` `=` `1` `):` ` ` `return` `0` ` ` `# Array to store Maxprofit by` ` ` `# resting on given day` ` ` `rest ` `=` `[` `0` `] ` `*` `n` ` ` `# Array to store Maxprofit by` ` ` `# buying or resting on the` ` ` `# given day` ` ` `hold ` `=` `[` `0` `] ` `*` `n` ` ` `# Array to store Maxprofit by` ` ` `# selling on given day` ` ` `sold ` `=` `[` `0` `] ` `*` `n` ` ` `# Initially there will 0 profit` ` ` `rest[` `0` `] ` `=` `0` ` ` `# Buying on 1st day results` ` ` `# in negative profit` ` ` `hold[` `0` `] ` `=` `-` `prices[` `0` `]` ` ` `# zero profit since selling` ` ` `# before buying isn't possible` ` ` `sold[` `0` `] ` `=` `0` ` ` `for` `i ` `in` `range` `(` `1` `, n):` ` ` `# max of profit on (i-1)th` ` ` `# day by resting and profit` ` ` `# on (i-1)th day by selling.` ` ` `rest[i] ` `=` `max` `(rest[i ` `-` `1` `],` ` ` `sold[i ` `-` `1` `])` ` ` `# max of profit by resting` ` ` `# on ith day and` ` ` `# buying on ith day.` ` ` `hold[i] ` `=` `max` `(hold[i ` `-` `1` `],` ` ` `rest[i ` `-` `1` `] ` `-` ` ` `prices[i])` ` ` `# max of profit by selling` ` ` `# on ith day` ` ` `sold[i] ` `=` `hold[i ` `-` `1` `] ` `+` `prices[i]` ` ` ` ` `# maxprofit` ` ` `return` `max` `(rest[n ` `-` `1` `],` ` ` `sold[n ` `-` `1` `])` `# Driver Code` `price ` `=` `[ ` `2` `, ` `4` `, ` `5` `, ` `0` `, ` `2` `]` `n ` `=` `len` `(price)` `print` `(maxProfit(price, n))` `# This code is contributed by avanitrachhadiya2155` |

## C#

`// C# program for the above problem` `using` `System;` `class` `GFG{` ` ` `static` `int` `maxProfit(` `int` `[] prices, ` `int` `n)` `{` ` ` ` ` `// If there is only one day` ` ` `// for buying and selling` ` ` `// no profit can be made` ` ` `if` `(n <= 1)` ` ` `return` `0;` ` ` `// Array to store Maxprofit by` ` ` `// resting on given day` ` ` `int` `[] rest = ` `new` `int` `[n];` ` ` `// Array to store Maxprofit by` ` ` `// buying or resting on the` ` ` `// given day` ` ` `int` `[] hold = ` `new` `int` `[9];` ` ` `// Array to store Maxprofit by` ` ` `// selling on given day` ` ` `int` `[] sold = ` `new` `int` `[9];` ` ` `// Initially there will 0 profit` ` ` `rest[0] = 0;` ` ` `// Buying on 1st day results` ` ` `// in negative profit` ` ` `hold[0] = -prices[0];` ` ` `// Zero profit since selling` ` ` `// before buying isn't possible` ` ` `sold[0] = 0;` ` ` `for` `(` `int` `i = 1; i < n; i++)` ` ` `{` ` ` ` ` `// max of profit on (i-1)th` ` ` `// day by resting and profit` ` ` `// on (i-1)th day by selling.` ` ` `rest[i] = Math.Max(rest[i - 1],` ` ` `sold[i - 1]);` ` ` ` ` `// max of profit by resting` ` ` `// on ith day and` ` ` `// buying on ith day.` ` ` `hold[i] = Math.Max(hold[i - 1],` ` ` `rest[i - 1] -` ` ` `prices[i]);` ` ` ` ` `// max of profit by selling` ` ` `// on ith day` ` ` `sold[i] = hold[i - 1] + prices[i];` ` ` `}` ` ` ` ` `// maxprofit` ` ` `return` `Math.Max(rest[n - 1],` ` ` `sold[n - 1]);` `}` `// Driver code` `static` `void` `Main()` `{` ` ` `int` `[] price = { 2, 4, 5, 0, 2 };` ` ` `int` `n = price.Length;` ` ` `Console.WriteLine(maxProfit(price, n));` `}` `}` `// This code is contributed by divyeshrabadiya07` |

## Javascript

`<script>` `// JavaScript program for the above problem` `function` `maxProfit( prices, n)` `{` ` ` `// If there is only one day` ` ` `// for buying and selling` ` ` `// no profit can be made` ` ` `if` `(n <= 1)` ` ` `return` `0;` ` ` `// Array to store Maxprofit by` ` ` `// resting on given day` ` ` `let rest = [];` ` ` `for` `(let k = 0;k<n;k++)` ` ` `rest.push(0);` ` ` `// Array to store Maxprofit by` ` ` `// buying or resting on the` ` ` `// given day` ` ` `let hold = [];` ` ` `for` `(let k = 0;k<n;k++)` ` ` `hold.push(0);` ` ` `// Array to store Maxprofit by` ` ` `// selling on given day` ` ` `let sold = [];` ` ` `for` `(let k = 0;k<n;k++)` ` ` `sold.push(0);` ` ` `// Initially there will 0 profit` ` ` `rest[0] = 0;` ` ` `// Buying on 1st day results` ` ` `// in negative profit` ` ` `hold[0] = -prices[0];` ` ` `// zero profit since selling` ` ` `// before buying isn't possible` ` ` `sold[0] = 0;` ` ` `for` `(let i = 1; i < n; i++) {` ` ` `// max of profit on (i-1)th` ` ` `// day by resting and profit` ` ` `// on (i-1)th day by selling.` ` ` `rest[i] = Math.max(rest[i - 1],` ` ` `sold[i - 1]);` ` ` `// max of profit by resting` ` ` `// on ith day and` ` ` `// buying on ith day.` ` ` `hold[i] = Math.max(hold[i - 1],` ` ` `rest[i - 1]` ` ` `- prices[i]);` ` ` `// max of profit by selling` ` ` `// on ith day` ` ` `sold[i] = hold[i - 1] + prices[i];` ` ` `}` ` ` `// maxprofit` ` ` `return` `Math.max(rest[n - 1],` ` ` `sold[n - 1]);` `}` `// Driver Code` `let price = [ 2, 4,` ` ` `5, 0, 2 ];` `let n = price.length;` `document.write( maxProfit(price, n),'<br>');` `</script>` |

**Output:**

4

**Time Complexity:** O(N) **Auxiliary Space: **O(N)