# Area of a Hexagon

A hexagon is a 6-sided, 2-dimensional geometric figure. The total of the internal angles of any hexagon is 720Â°. A regular hexagon has 6 rotational symmetries and 6 reflection symmetries. All internal angles are 120 degrees.

**Examples :**

Input: 4 Output: 41.5692 Input: 6 Output: 93.5307

Number of vertices: 6

Number of edges: 6

Internal angle: 120Â°

Area = (3 âˆš3(n)^{2}) / 2

**How does the formula work?** There are mainly 6 equilateral triangles of side n and area of an equilateral triangle is (sqrt(3)/4) * n * n. Since in hexagon, there are total 6 equilateral triangles with side n, are of the hexagon becomes (3*sqrt(3)/2) * n * n

## C++

`// CPP program to find` `// area of a Hexagon` `#include <iostream>` `#include <math.h>` `using` `namespace` `std;` `// function for calculating` `// area of the hexagon.` `double` `hexagonArea(` `double` `s)` `{` ` ` `return` `((3 * ` `sqrt` `(3) *` ` ` `(s * s)) / 2); ` `}` `// Driver Code` `int` `main()` `{` ` ` `// Length of a side` ` ` `double` `s = 4;` ` ` `cout << ` `"Area : "` ` ` `<< hexagonArea(s);` ` ` `return` `0;` `}` |

## Java

`class` `GFG` `{` ` ` `// Create a function for calculating` ` ` `// the area of the hexagon.` ` ` `public` `static` `double` `hexagonArea(` `double` `s)` ` ` `{` ` ` `return` `((` `3` `* Math.sqrt(` `3` `) *` ` ` `(s * s)) / ` `2` `);` ` ` `}` ` ` ` ` `// Driver Code` ` ` `public` `static` `void` `main(String[] args)` ` ` `{ ` ` ` `// Length of a side` ` ` `double` `s = ` `4` `; ` ` ` `System.out.print(` `"Area: "` `+` ` ` `hexagonArea(s) );` ` ` `}` `}` |

## Python3

`# Python3 program to find` `# area of a Hexagon` `import` `math` `# Function for calculating` `# area of the hexagon.` `def` `hexagonArea(s):` ` ` ` ` `return` `((` `3` `*` `math.sqrt(` `3` `) ` `*` ` ` `(s ` `*` `s)) ` `/` `2` `);` ` ` `# Driver code ` `if` `__name__ ` `=` `=` `"__main__"` `:` ` ` `# length of a side.` ` ` `s ` `=` `4` ` ` `print` `(` `"Area:"` `,` `"{0:.4f}"` `.` ` ` `format` `(hexagonArea(s)))` `# This code is contributed by Naman_Garg` |

## C#

`// C# program to find` `// area of a Hexagon` `using` `System;` `class` `GFG` `{` ` ` ` ` `// Create a function for calculating` ` ` `// the area of the hexagon.` ` ` `public` `static` `double` `hexagonArea(` `double` `s)` ` ` `{` ` ` `return` `((3 * Math.Sqrt(3) *` ` ` `(s * s)) / 2);` ` ` `}` ` ` ` ` `// Driver Code` ` ` `public` `static` `void` `Main()` ` ` `{` ` ` `// Length of a side` ` ` `double` `s = 4;` ` ` ` ` `Console.WriteLine(` `"Area: "` `+` ` ` `hexagonArea(s) );` ` ` `}` `}` `// This code is contributed by vt_m.` |

## PHP

`<?php` `// PHP program to find` `// area of a Hexagon` `// function for calculating` `// area of the hexagon.` `function` `hexagonArea( ` `$s` `)` `{` ` ` `return` `((3 * sqrt(3) *` ` ` `(` `$s` `* ` `$s` `)) / 2);` `}` `// Driver Code` `// Length of a side` `$s` `= 4;` `echo` `(` `"Area : "` `);` `echo` `(hexagonArea(` `$s` `));` `// This code is contributed by vt_m.` `?>` |

## Javascript

`<script>` `// Javascript program to find` `// area of a Hexagon` `// function for calculating` `// area of the hexagon.` `function` `hexagonArea(s)` `{` ` ` `return` `((3 * Math.sqrt(3) *` ` ` `(s * s)) / 2); ` `}` `// Driver Code` ` ` ` ` `// Length of a side` ` ` `let s = 4;` ` ` `document.write(` `"Area : "` ` ` `+ hexagonArea(s));` `// This code is contributed by Mayank Tyagi` `</script>` |

**Output :**

Area: 41.5692

**Time Complexity: **O(1) **Auxiliary Space:** O(1), since no extra space has been taken.