# Maximum integral co-ordinates with non-integer distances

• Last Updated : 22 Jun, 2022

Given a maximum limit of x – coordinate and y – coordinate, we want to calculate a set of coordinates such that the distance between any two points is a non-integer number. The coordinates (i, j) chosen should be of range 0<=i<=x and 0<=j<=y. Also, we have to maximize the set.

Examples:

```Input : 4 4
Output : 0 4
1 3
2 2
3 1
4 0
Explanation : Distance between any two points
mentioned in output is not integer.```

Firstly, we want to create a set, which means our set cannot contain any other point with same x’s or y’s which are used before. Well, the reason behind it is that such points which either have same x-coordinate or y-coordinate would cancel that coordinate, resulting an integral distance between them.
Example, consider points (1, 4) and (1, 5), the x-coordinate would cancel and thus, we will get and integral distance.
Secondly, we can observe that, we have only x+1 distinct i-coordinates and y+1 distinct j-coordinates. Thus, the size of the set cannot exceed min(x, y)+1.
Third observation is that we know that the diagonal elements are |i-j|* distance apart, thus, we take evaluate along the diagonal element of i-coordinate and calculate the j-coordinate by formula min(i, j)-i.

## C++

 `// C++ program to find maximum integral points``// such that distances between any two is not``// integer.``#include ``using` `namespace` `std;` `// Making set of coordinates such that``// any two points are non-integral distance apart``void` `printSet(``int` `x, ``int` `y)``{``    ``// used to avoid duplicates in result``    ``set > arr;``    ` `    ``for` `(``int` `i = 0; i <= min(x, y); i++) {` `        ``pair<``int``, ``int``> pq;``        ``pq = make_pair(i, min(x, y) - i);``        ``arr.insert(pq);``    ``}` `    ``for` `(``auto` `it = arr.begin(); it != arr.end(); it++)``        ``cout << (*it).first << ``" "` `<< (*it).second << endl;``}` `// Driver function``int` `main()``{``    ``int` `x = 4, y = 4;``    ``printSet(x, y);``    ``return` `0;``}`

## Java

 `// Java program to find maximum integral points``// such that distances between any two is not``// integer.` `// helper class to store pair of a set.``class` `Pair {` `    ``// Pair attributes``    ``public` `int` `index;``    ``public` `int` `value;` `    ``// Constructor to initialize pair``    ``public` `Pair(``int` `index, ``int` `value)``    ``{``        ``// This keyword refers to current instance``        ``this``.index = index;``        ``this``.value = value;``    ``}``}` `public` `class` `Main {` `    ``// Making set of coordinates such that``    ``// any two points are non-integral distance apart``    ``static` `void` `printSet(``int` `x, ``int` `y)``    ``{``        ``// used to avoid duplicates in result``        ``// set > arr;``        ``HashSet arr = ``new` `HashSet<>();` `        ``for` `(``int` `i = ``0``; i <= Math.min(x, y); i++) {``            ``Pair pq = ``new` `Pair(i, Math.min(x, y) - i);``            ``arr.add(pq.index + ``" "` `+ pq.value);``        ``}` `        ``for` `(String e : arr) {``            ``System.out.println(e);``        ``}``    ``}` `    ``public` `static` `void` `main(String[] args)``    ``{``        ``int` `x = ``4``, y = ``4``;``        ``printSet(x, y);``    ``}``}` `// The code is contributed by Gautam goel (gautamgoel962)`

## Python3

 `# Python3 program to find maximum integral points``# such that distances between any two is not``# integer.` `# Making set of coordinates such that``# any two points are non-integral distance apart``def` `printSet(x, y):``    ` `    ``# Used to avoid duplicates in result``    ``arr ``=` `[]` `    ``for` `i ``in` `range``(``min``(x, y) ``+` `1``):``        ``pq ``=` `[i, ``min``(x, y) ``-` `i]``        ``arr.append(pq)` `    ``for` `it ``in` `arr:``        ``print``(it[``0``], it[``1``])` `# Driver code``if` `__name__ ``=``=` `"__main__"``:` `    ``x ``=` `4``    ``y ``=` `4``    ` `    ``printSet(x, y)` `# This code is contributed by ukasp`

## C#

 `// C# program to find maximum integral points``// such that distances between any two is not``// integer.``using` `System;``using` `System.Collections.Generic;` `// helper class to store pair of a set.``class` `Pair``{` `    ``// Pair attributes``    ``public` `int` `index;``    ``public` `int` `value;` `    ``// Constructor to initialize pair``    ``public` `Pair(``int` `index, ``int` `value)``    ``{``        ``// This keyword refers to current instance``        ``this``.index = index;``        ``this``.value = value;``    ``}``}` `public` `class` `GFG``{` `    ``// Making set of coordinates such that``    ``// any two points are non-integral distance apart``    ``static` `void` `printSet(``int` `x, ``int` `y)``    ``{``        ``// used to avoid duplicates in result``        ``// set > arr;``        ``HashSet arr = ``new` `HashSet();` `        ``for` `(``int` `i = 0; i <= Math.Min(x, y); i++)``        ``{``            ``Pair pq = ``new` `Pair(i, Math.Min(x, y) - i);``            ``arr.Add(pq.index + ``" "` `+ pq.value);``        ``}` `        ``foreach` `(String e ``in` `arr)``        ``{``            ``Console.WriteLine(e);``        ``}``    ``}` `    ``public` `static` `void` `Main()``    ``{``        ``int` `x = 4, y = 4;``        ``printSet(x, y);``    ``}``}` `// The code is contributed by Saurabh Jaiswal`

## Javascript

 ``

Output:

```0 4
1 3
2 2
3 1
4 0```

Time Complexity: O(nlogn), where n is min(x,y) as we are using a loop to traverse min(x,y) times.

Auxiliary Space: O(n), where n is min(x,y) as we are using extra space for the set arr.

My Personal Notes arrow_drop_up