Skip to content
Related Articles

Related Articles

Program to find slope of a line

View Discussion
Improve Article
Save Article
  • Difficulty Level : Basic
  • Last Updated : 28 Jun, 2022
View Discussion
Improve Article
Save Article

Given two coordinates, find the slope of a straight line.

Examples: 

Input  : x1 = 4, y1 = 2, 
         x2 = 2, y2 = 5 
Output : Slope is -1.5

Approach: To calculate the slope of a line you need only two points from that line, (x1, y1) and (x2, y2). The equation used to calculate the slope from two points is: 
 

Below is the implementation of the above approach: 

C++




// C++ program for slope of line
#include <bits/stdc++.h>
using namespace std;
 
// function to find the slope of a straight line
float slope(float x1, float y1, float x2, float y2)
{
    if (x2 - x1 != 0)
        return (y2 - y1) / (x2 - x1);
    return INT_MAX;
}
 
// driver code to check the above function
int main()
{
    float x1 = 4, y1 = 2;
    float x2 = 2, y2 = 5;
    cout << "Slope is: " << slope(x1, y1, x2, y2);
    return 0;
}

Java




// Java program for slope of line
import java.io.*;
 
class GFG {
    static float slope(float x1, float y1, float x2,
                       float y2)
    {
        if (x2 - x1 != 0)
            return (y2 - y1) / (x2 - x1);
        return Integer.MAX_VALUE;
    }
    public static void main(String[] args)
    {
        float x1 = 4, y1 = 2;
        float x2 = 2, y2 = 5;
        System.out.println("Slope is "
                           + slope(x1, y1, x2, y2));
    }
}

Python




# Python program for slope of line
def slope(x1, y1, x2, y2):
    if(x2 - x1 != 0):
      return (float)(y2-y1)/(x2-x1)
    return sys.maxint
 
 
# driver code
x1 = 4
y1 = 2
x2 = 2
y2 = 5
print "Slope is :", slope(x1, y1, x2, y2)

C#




using System;
 
public static class GFG {
    // C# program for slope of line
 
    // function to find the slope of a straight line
    public static float slope(float x1, float y1, float x2,
                              float y2)
    {
        if (x2 - x1 != 0F) {
            return (y2 - y1) / (x2 - x1);
        }
        return int.MaxValue;
    }
 
    // driver code to check the above function
    internal static void Main()
    {
        float x1 = 4F;
        float y1 = 2F;
        float x2 = 2F;
        float y2 = 5F;
        Console.Write("Slope is: ");
        Console.Write(slope(x1, y1, x2, y2));
    }
}
 
// The code is contributed by Aarti_Rathi

PHP




<?php
// PHP program for
// slope of line
 
// function to find the
// slope of a straight line
function slope($x1, $y1, $x2, $y2)
{
  if($x1 == $x2)
  {
    return PHP_INT_MAX;
  }
       return ($y2 - $y1) /
           ($x2 - $x1);
}
 
    // Driver Code
    $x1 = 4;
    $y1 = 2;
    $x2 = 2;
    $y2 = 5;
    echo "Slope is: "
         , slope($x1, $y1,
                 $x2, $y2);
 
// This code is contributed by Sayan Chatterjee
?>

Javascript




// C Javascript program for slope of line
 
// function to find the slope of a straight line
function slope(x1, y1, x2, y2)
{
    if (x2 - x1 != 0)
    {
        return (y2 - y1) / (x2 - x1);
    }
    return Number.MAX_VALUE;
}
 
// driver code to check the above function
var x1 = 4;
var y1 = 2;
var x2 = 2;
var y2 = 5;
console.log("Slope is " + slope(x1, y1, x2, y2));
 
// The code is contributed by Aarti_Rathi

Output

Slope is: -1.5

Time Complexity: O(1)
Auxiliary Space: O(1)


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!